Search results for "information dynamic"
showing 10 items of 30 documents
An Information-Theoretic Framework to Map the Spatiotemporal Dynamics of the Scalp Electroencephalogram
2016
We present the first application of the emerging framework of information dynamics to the characterization of the electroencephalography (EEG) activity. The framework provides entropy-based measures of information storage (self entropy, SE) and information transfer (joint transfer entropy (TE) and partial TE), which are applied here to detect complex dynamics of individual EEG sensors and causal interactions between different sensors. The measures are implemented according to a model-free and fully multivariate formulation of the framework, allowing the detection of nonlinear dynamics and direct links. Moreover, to deal with the issue of volume conduction, a compensation for instantaneous e…
Conditional Self-Entropy and Conditional Joint Transfer Entropy in Heart Period Variability during Graded Postural Challenge.
2015
Self-entropy (SE) and transfer entropy (TE) are widely utilized in biomedical signal processing to assess the information stored into a system and transferred from a source to a destination respectively. The study proposes a more specific definition of the SE, namely the conditional SE (CSE), and a more flexible definition of the TE based on joint TE (JTE), namely the conditional JTE (CJTE), for the analysis of information dynamics in multivariate time series. In a protocol evoking a gradual sympathetic activation and vagal withdrawal proportional to the magnitude of the orthostatic stimulus, such as the graded head-up tilt, we extracted the beat-to-beat spontaneous variability of heart per…
Measuring High-Order Interactions in Rhythmic Processes Through Multivariate Spectral Information Decomposition
2021
Many complex systems in physics, biology and engineering are modeled as dynamical networks and described using multivariate time series analysis. Recent developments have shown that the emergent dynamics of a network system are significantly affected by interactions involving multiple network nodes which cannot be described using pairwise links. While these higher-order interactions can be probed using information-theoretic measures, a rigorous framework to describe them in the frequency domain is still lacking. This work presents an approach for the spectral decomposition of multivariate information measures, capable of identifying higher-order synergistic and redundant interactions betwee…
The inner speech of the IDyOT
2020
An Information-Theoretic Framework to Measure the Dynamic Interaction between Neural Spike Trains
2021
Understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience. However, an optimal approach of assessing these interactions has not been established, as existing methods either do not consider the inherent point process nature of spike trains or are based on parametric assumptions that may lead to wrong inferences if not met. This work presents a framework, grounded in the field of information dynamics, for the model-free, continuous-time estimation of both undirected (symmetric) and directed (causal) interactions between pairs of spike trains. The framework decomposes the overall information exchanged dynami…
Information dynamics of brain-heart physiological networks during sleep
2014
This study proposes an integrated approach, framed in the emerging fields of network physiology and information dynamics, for the quantitative analysis of brain-heart interaction networks during sleep. With this approach, the time series of cardiac vagal autonomic activity and brain wave activities measured respectively as the normalized high frequency component of heart rate variability and the EEG power in the δ, θ, Ï, and β bands, are considered as realizations of the stochastic processes describing the dynamics of the heart system and of different brain sub-systems. Entropy-based measures are exploited to quantify the predictive information carried by each (sub)system, and to dissec…
Information Decomposition: A Tool to Dissect Cardiovascular and Cardiorespiratory Complexity
2017
This chapter reports some recent developments of information-theoretic concepts applied to the description of coupled dynamical systems, which allow to decompose the entropy of an assigned target system into components reflecting the information stored in the system and the information transferred to it from the other systems, as well as the nature (synergistic or redundant) of the information transferred to the target. The decomposition leads to well-defined measures of information dynamics which in the chapter will be defined theoretically, computed in simulations of linear Gaussian systems and implemented in practice through the application to heart period, arterial pressure and respirat…
Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes
2017
Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by prevalently redundant or sy…
The Role of Assumptions in Ohlson Model Performance: Lessons for Improving Equity-Value Modeling
2021
In this paper, we test whether the short-run econometric conditions for the basic assumptions of the Ohlson valuation model hold, and then we relate these results with the fulfillment of the short-run econometric conditions for this model to be effective. Better future modeling motivated us to analyze to what extent the assumptions involved in this seminal model are not good enough approximations to solve the firm valuation problem, causing poor model performance. The model is based on the well-known dividend discount model and the residual income valuation model, and it adds a linear information model, which is a time series model by nature. Therefore, we adopt the time series approach. In…
Information Decomposition in Multivariate Systems: Definitions, Implementation and Application to Cardiovascular Networks
2016
The continuously growing framework of information dynamics encompasses a set of tools, rooted in information theory and statistical physics, which allow to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of complex networks. Building on the most recent developments in this field, this work designs a complete approach to dissect the information carried by the target of a network of multiple interacting systems into the new information produced by the system, the information stored in the system, and the information transferred to it from the other systems; information storage and transfer are then further decomposed into amou…